PMT

1(a)(i)	$[Velocity] = LT^{-1}$	B1	(Deduct 1 mark if answers given as
	[Acceleration] = LT^{-2}	B1	ms^{-1} , ms^{-2} , $kgms^{-2}$ etc)
	$[Force] = MLT^{-2}$	B1	
	$[\text{Density }] = ML^{-3}$	B1	
	$[Pressure] = M L^{-1} T^{-2}$	B1	
		5	
(ii)	$[P] = M L^{-1} T^{-2}$		
	$\left[\frac{1}{2}\rho v^{2}\right] = (M L^{-3})(L T^{-1})^{2}$	M1	Finding dimensions of 2nd or 3rd
	$= M L^{-1} T^{-2}$	A1	term
	$[\rho g h] = (M L^{-3})(L T^{-2})(L) = M L^{-1} T^{-2}$	A1	
	All 3 terms have the same dimensions	E1	Allow e.g. 'Equation is
		4	following correct work
(b)(i)			
	<u>↑h</u>		
	2.2	M1	For a 'cos' curve (starting at the
			highest point)
	1.6 -	A1	Approx correct values marked on
		2	both axes
	0		
	J°41 C		
(ii)	Period $\frac{2\pi}{2} = 3.49$	M1	
	$\omega = 1.8$	A1	Accept $\frac{2\pi}{2}$
		M1	For $h = c + a \cos/\sin w$ with either
		1011	$c = \frac{1}{2}(1.6 + 2.2)$ or $a = \frac{1}{2}(2.2 - 1.6)$
	$h = 1.9 + 0.3 \cos 1.8t$	F1	
(:::)	When h 17 floot is 0.2 m below control	4	
(111)	when $n = 1.7$, float is 0.2 in below centre Acceleration is $\omega^2 x = 1.8^2 \times 0.2$	M141	Award M1 if there is at most one
	$= 0.648 \text{ m s}^{-2} \text{ upwards}$	Al cao	error
		3	
	OR When $h = 1.7$, $\cos 1.8t = -\frac{2}{3}$		
	(1.8t = 2.30, t = 1.28)		
	Acceleration $\ddot{h} = -0.3 \times 1.8^2 \cos 1.8t$ M1		
	$= -0.3 \times 1.8^2 \times (-\frac{2}{3})$ A1		
	$= 0.648 \text{ m s}^{-2} \text{ upwards A1 cao}$		

PMT

2 (i)	$R\cos 60 = 0.4 \times 9.8$ Normal reaction is 7.84 N	M1 A1		Resolving vertically (e.g. $R \sin 60 = mg$ is M1A0 $R = mg \cos 60$ is M0)
(ii)	$R\sin 60 = 0.4 \times \frac{v^2}{2.7\sin 60}$ Speed is 6.3 ms ⁻¹	M1 M1 A1 A1	cao	Horizontal equation of motion Acceleration $\frac{v^2}{r}$ (M0 for $\frac{v^2}{2.7}$)
	OR $R \sin 60 = 0.4 \times (2.7 \sin 60)\omega^2$ $\omega = 2.694$ $v = (2.7 \sin 60)\omega$ Speed is 6.3 ms^{-1} A1 ca	11 11 11 ao		Horizontal equation of motion or $R = 0.4 \times 2.7 \times \omega^2$ For $v = r\omega$ (M0 for $v = 2.7\omega$)
(iii)	By conservation of energy, $\frac{1}{2} \times 0.4 \times (9^2 - v^2) = 0.4 \times 9.8 \times (2.7 + 2.7 \cos \theta)$ $81 - v^2 = 52.92 + 52.92 \cos \theta$ $v^2 = 28.08 - 52.92 \cos \theta$	M1 A1 A1		Equation involving KE and PE Any (reasonable) correct form e.g. $v^2 = 81 - 52.92(1 + \cos \theta)$
(iv)	$R + 0.4 \times 9.8 \cos \theta = 0.4 \times \frac{v^2}{2.7}$ $R + 3.92 \cos \theta = \frac{0.4}{2.7} (28.08 - 52.92 \cos \theta)$ $R + 3.92 \cos \theta = 4.16 - 7.84 \cos \theta$ $R = 4.16 - 11.76 \cos \theta$	M1 A1 M1 A1 E1		Radial equation with 3 termsSubstituting expression for v^2 SR If θ is taken to the downwardvertical, maximum marks are:M1A0A0 in (iii)M1A1M1A1E0 in (iv)
(v)	Leaves surface when $R = 0$ $\cos \theta = \frac{4.16}{11.76}$ $v^2 = 28.08 - 52.92 \times \frac{4.16}{11.76}$ (= 9.36) Speed is 3.06 m s ⁻¹	M1 A1 M1 A1	cao	Dependent on previous M1 or using $mg \cos \theta = \frac{mv^2}{r}$

PMT

3 (i)	Tension is $637 \times 0.1 = 63.7$ N	B1	
	Energy is $\frac{1}{2} \times 637 \times 0.1^2$	M1	
	= 3.185 J	A1	
		3	
(ii)	Let θ be angle between RA and vertical	D1	
	$\cos\theta = \frac{5}{13} (\theta = 67.4^\circ)$	BI	
	$T\cos\theta = mg$	M1	Resolving vertically
	$63.7 \times \frac{5}{13} = m \times 9.8$	A1	
	Mass of ring is 2.5 kg	E1	
		4	
(iii)		M1	Considering PE
	LOSS OF PE IS $2.5 \times 9.8 \times (0.9 - 0.5)$	AI M1	Award M1 if not more than one
			error
	EE at lowest point is $\frac{1}{2} \times 637 \times 0.3^2$ (= 28.665)	A1	
	By conservation of energy,	M1	Equation involving KE, PE and EE
	$2.5 \times 9.8 \times 0.4 + \frac{1}{2} \times 2.5u^2 = \frac{1}{2} \times 637 \times 0.3^2 - 3.185$	F1	
	$9.8 + 1.25u^2 = 25.48$		
	$u^2 = 12.544$		
	u = 3.54	A1 cao	
		7	
(iv)	From lowest point to level of A,	2.41	
	Loss of EE is 28.665 Gain in PE is $25 \times 9.8 \times 0.9 = 22.05$	MI M1	EE at 'start' and at level of A PE at 'start' and at level of A
	Guin In FE 15 2.5 × 9.6 × 6.9 = 22.65	1,11	(For M2 it must be the same 'start')
		M1	Comparing EE and PE (or
	Since $28.665 > 22.05$		equivalent, $a = \frac{1}{2}mu^2 + \frac{2}{2}185 - max(0.5 + \frac{1}{2}mu^2)$
	Ring will rise above level of A	A1 cao	Fully correct derivation
		4	
			SR If 637 is used as modulus,
			maximum marks are:
			$\begin{array}{c} (1) \text{ BUMIAU} \\ (ii) \text{ B1M1A1E0} \end{array}$
			(iii) M1A1M1A1M1F1A0
			(iv) M1M1M1A0

-		r	
4 (a)	Area is $\int_{0}^{2} x^{3} dx = \left[\frac{1}{4}x^{4}\right]_{0}^{2} = 4$	B1	
	$\int x y \mathrm{d}x = \int_0^2 x^4 \mathrm{d}x$	M1	
	$=\left[\frac{1}{5}x^{5}\right]_{0}^{2}=6.4$	A1	
	$\overline{x} = \frac{6.4}{4} = 1.6$	A1	
	$\int \frac{1}{2} y^2 \mathrm{d}x = \int_0^2 \frac{1}{2} x^6 \mathrm{d}x$	M1	Condone omission of $\frac{1}{2}$
	$=\left[\frac{1}{14}x^7\right]_0^2 = \frac{64}{7}$	A1	
	$\overline{y} = \frac{\int \frac{1}{2} y^2 \mathrm{d}x}{\int y \mathrm{d}x}$	M1	
	$=\frac{\frac{64}{7}}{4}=\frac{16}{7}$	A1 8	Accept 2.3 from correct working
(b)(i)	Volume is $\int \pi y^2 dx = \int_{1}^{2} \pi (4 - x^2) dx$	M1	π may be omitted throughout
	$= \pi \left[4x - \frac{1}{3}x^3 \right]_1^2 = \frac{5}{3}\pi$	A1	For $\frac{5}{3}$
	$\int \pi x y^2 dx = \int_1^2 \pi x (4 - x^2) dx$	M1	
	$= \pi \left[2x^2 - \frac{1}{4}x^4 \right]_1^2 = \frac{9}{4}\pi$	A1	For $\frac{9}{4}$
	$\overline{x} = \frac{\int \pi x y^2 dx}{\int \pi y^2 dx}$	M1	
	$=\frac{\frac{9}{4}\pi}{\frac{5}{3}\pi}=\frac{27}{20}=1.35$	E1 6	Must be fully correct
(ii)	Height of solid is $h = 2\sqrt{3}$ T $h = mg \times 0.35$	B1 M1 F1	Taking moments
	F = T = 0.10 lmg, $R = mgLeast coefficient of friction is \frac{F}{R} = 0.101$	A1 4	Must be fully correct (e.g. A0 if $m = \frac{5}{3}\pi$ is used)