1(a)(i)	$\begin{aligned} & {[\text { Velocity }]=\mathrm{LT}^{-1}} \\ & {[\text { Acceleration }]=\mathrm{LT}^{-2}} \\ & {[\text { Force }]=\mathrm{MLT}^{-2}} \\ & {[\text { Density }]=\mathrm{ML}^{-3}} \\ & {[\text { Pressure }]=\mathrm{ML}^{-1} \mathrm{~T}^{-2}} \end{aligned}$	B1 B1 B1 B1 B1 5	(Deduct 1 mark if answers given as $\mathrm{ms}^{-1}, \mathrm{~ms}^{-2}, \mathrm{kgms}^{-2}$ etc)
(ii)	$\left[\begin{array}{rl} {[P]=M L^{-1} \mathrm{~T}^{-2}} \\ {\left[\frac{1}{2} \rho v^{2}\right]} & =\left(\mathrm{ML}^{-3}\right)\left(\mathrm{LT}^{-1}\right)^{2} \\ & =\mathrm{ML}^{-1} \mathrm{~T}^{-2} \\ {[\rho g h]} & \left(\mathrm{ML}^{-3}\right)\left(\mathrm{LT}^{-2}\right)(\mathrm{L})=\mathrm{ML}^{-1} \mathrm{~T}^{-2} \end{array}\right.$ All 3 terms have the same dimensions	$\left\|\begin{array}{ll} \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \\ \text { E1 } & \\ 4 \end{array}\right\|$	Finding dimensions of 2nd or 3rd term Allow e.g. ‘Equation is dimensionally consistent' following correct work
(b)(i)		M1 A1 2	For a 'cos' curve (starting at the highest point) Approx correct values marked on both axes
(ii)	$\begin{gathered} \text { Period } \frac{2 \pi}{\omega}=3.49 \\ \omega=1.8 \\ h=1.9+0.3 \cos 1.8 t \end{gathered}$	$\left\|\begin{array}{ll} \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { F1 } & \\ \hline \end{array}\right\|$	Accept $\frac{2 \pi}{3.49}$ For $h=c+a \cos / \sin$ with either $c=\frac{1}{2}(1.6+2.2)$ or $a=\frac{1}{2}(2.2-1.6)$
(iii)	When $h=1.7$, float is 0.2 m below centre Acceleration is $\omega^{2} x=1.8^{2} \times 0.2$ $=0.648 \mathrm{~m} \mathrm{~s}^{-2}$ upwards	M1A1 A1 cao	Award M1 if there is at most one error
	$\begin{aligned} \text { OR When } h=1.7, \cos 1.8 t=-\frac{2}{3} & \\ & (1.8 t=2.30, t=1.28) \\ \text { Acceleration } \ddot{h}= & -0.3 \times 1.8^{2} \cos 1.8 t \quad \text { M1 } \\ = & -0.3 \times 1.8^{2} \times\left(-\frac{2}{3}\right) \\ & =0.648 \mathrm{~ms}^{-2} \text { upwards A1 cao } \end{aligned}$		

2 (i)	$R \cos 60=0.4 \times 9.8$ Normal reaction is 7.84 N	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ 2	Resolving vertically (e.g. $R \sin 60=m g$ is M1A0 $R=m g \cos 60$ is M0)
(ii)	$\begin{aligned} & R \sin 60=0.4 \times \frac{v^{2}}{2.7 \sin 60} \\ & \text { Speed is } 6.3 \mathrm{~ms}^{-1} \end{aligned}$	M1 M1 A1 A1 cao 4	Horizontal equation of motion Acceleration $\frac{v^{2}}{r}$ (M0 for $\frac{v^{2}}{2.7}$)
	$\text { OR } \begin{gathered} \text { ORin } 60=0.4 \times(2.7 \sin 60) \omega^{2} \\ \omega=2.694 \\ v=(2.7 \sin 60) \omega \\ \\ \text { Speed is } 6.3 \mathrm{~ms}^{-1} \end{gathered}$		Horizontal equation of motion or $R=0.4 \times 2.7 \times \omega^{2}$ For $v=r \omega \quad(\mathrm{M} 0$ for $v=2.7 \omega)$
(iii)	By conservation of energy, $\begin{aligned} \frac{1}{2} \times 0.4 \times\left(9^{2}-v^{2}\right) & =0.4 \times 9.8 \times(2.7+2.7 \cos \theta) \\ 81-v^{2} & =52.92+52.92 \cos \theta \\ v^{2} & =28.08-52.92 \cos \theta \end{aligned}$	M1 A1 A1 3	Equation involving KE and PE Any (reasonable) correct form e.g. $v^{2}=81-52.92(1+\cos \theta)$
(iv)	$\begin{aligned} R+0.4 \times 9.8 \cos \theta & =0.4 \times \frac{v^{2}}{2.7} \\ R+3.92 \cos \theta & =\frac{0.4}{2.7}(28.08-52.92 \cos \theta) \\ R+3.92 \cos \theta & =4.16-7.84 \cos \theta \\ R & =4.16-11.76 \cos \theta \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { E1 } \end{aligned}$	Radial equation with 3 terms Substituting expression for v^{2} $S R$ If θ is taken to the downward vertical, maximum marks are: M1A0A0 in (iii) M1A1M1A1E0 in (iv)
(v)	Leaves surface when $R=0$ $\begin{aligned} & \cos \theta=\frac{4.16}{11.76} \\ & v^{2}=28.08-52.92 \times \frac{4.16}{11.76} \quad(=9.36) \end{aligned}$ Speed is $3.06 \mathrm{~m} \mathrm{~s}^{-1}$	M1 A1 M1 A1 cao 4	Dependent on previous M1 or using $m g \cos \theta=\frac{m v^{2}}{r}$

3 (i)	Tension is $637 \times 0.1=63.7 \mathrm{~N}$ Energy is $\frac{1}{2} \times 637 \times 0.1^{2}$ $=3.185 \mathrm{~J}$	$\left.\begin{array}{ll} \hline \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ & 3 \end{array} \right\rvert\,$	
(ii)	Let θ be angle between RA and vertical $\begin{gathered} \cos \theta=\frac{5}{13} \quad\left(\theta=67.4^{\circ}\right) \\ T \cos \theta=m g \\ 63.7 \times \frac{5}{13}=m \times 9.8 \end{gathered}$ Mass of ring is 2.5 kg	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{E} 1 \end{aligned}$ 4	Resolving vertically
(iii)	Loss of PE is $2.5 \times 9.8 \times(0.9-0.5)$ EE at lowest point is $\frac{1}{2} \times 637 \times 0.3^{2} \quad(=28.665)$ By conservation of energy, $\begin{aligned} 2.5 \times 9.8 \times 0.4+\frac{1}{2} \times 2.5 u^{2} & =\frac{1}{2} \times 637 \times 0.3^{2}-3.185 \\ 9.8+1.25 u^{2} & =25.48 \\ u^{2} & =12.544 \\ u & =3.54 \end{aligned}$	M1 A1 M1 A1 M1 F1 A1 cao 7	Considering PE or PE at start and finish Award M1 if not more than one error Equation involving KE, PE and EE
(iv)	From lowest point to level of A, Loss of EE is 28.665 Gain in PE is $2.5 \times 9.8 \times 0.9=22.05$ Since $28.665>22.05$, Ring will rise above level of A	M1 M1 M1 A1 cao 4	EE at 'start' and at level of A PE at 'start' and at level of A (For M2 it must be the same 'start') Comparing EE and PE (or equivalent, e.g. $\left.\frac{1}{2} m u^{2}+3.185=m g \times 0.5+\frac{1}{2} m v^{2}\right)$ Fully correct derivation
			$S R$ If 637 is used as modulus, maximum marks are: (i) B 0 M 1 A 0 (ii) B1M1A1E0 (iii) M1A1M1A1M1F1A0 (iv) M1M1M1A0

4 (a)	$\begin{aligned} & \text { Area is } \int_{0}^{2} x^{3} \mathrm{~d} x=\left[\frac{1}{4} x^{4}\right]_{0}^{2}=4 \\ & \int x y \mathrm{~d} x=\int_{0}^{2} x^{4} \mathrm{~d} x \\ & =\left[\frac{1}{5} x^{5}\right]_{0}^{2}=6.4 \\ & \begin{array}{l} \bar{x}=\frac{6.4}{4}=1.6 \end{array} \\ & \begin{array}{l} \begin{array}{l} \frac{1}{2} y^{2} \mathrm{~d} x \end{array}=\int_{0}^{2} \frac{1}{2} x^{6} \mathrm{~d} x \\ =\left[\frac{1}{14} x^{7}\right]_{0}^{2}=\frac{64}{7} \\ \bar{y}=\frac{\int \frac{1}{2} y^{2} \mathrm{~d} x}{\int y \mathrm{~d} x} \\ =\frac{\frac{64}{7}}{4}=\frac{16}{7} \end{array} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	8	Condone omission of $\frac{1}{2}$ Accept 2.3 from correct working
(b)(i)		M1 A1 M1 A1 M1 E1	6	π may be omitted throughout For $\frac{5}{3}$ For $\frac{9}{4}$ Must be fully correct
(ii)	Height of solid is $h=2 \sqrt{3}$ $\begin{aligned} & T h=m g \times 0.35 \\ & F=T=0.101 \mathrm{mg}, \quad R=m g \end{aligned}$ Least coefficient of friction is $\frac{F}{R}=0.101$	$\begin{array}{\|l} \hline \text { B1 } \\ \text { M1 } \\ \text { F1 } \\ \text { A1 } \end{array}$		Taking moments Must be fully correct (e.g. A0 if $m=\frac{5}{3} \pi$ is used)

